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SECTION I

INTRODUCTION

While there has been great progress in recent years in the

(1)

calculation of unsteady transonic flows , rarely have any of the
computational procedures which have evolved been applied to a set

of similar problems for the purpose of analytical comparison. The
objective of this study is to provide such a comparison for two of
these methods in order that the character of the resultant solutions
for each may be examined. As the ultimate use of any flow field
computational procedure is to establish the aerodynamic forces nec-
essary for performance evaluation and structural analysis, it is the"
intention here to indicate the expected behavior of calculations for
such applications.

Although many unsteady transonic flow problems have been con-
sidered to date, there exist only three approaches by which unsteady
aerodynamic forces may be obtained; namely, harmonic analysis, time
integration, and the indicial method. The indicial method, while
having certain inherent advantages for structural applications, re-
quires the flow field response to a step change in a given mode of
motion of the airfoil or body under consideration(z). This "in-
dicial response' is obtained via time integration, and thus this
method, in spirit at least, will not be considered distinct. We,
therefore, limit our attention to a comparison of the remaining two

procedures. Only two-dimensional flows will be considered here,

though this is not a strict requirement for the application of

E —
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either method. This assumption considerably reduces the necessary
computations without loss of any of the salient features of either
approach.

A number of successful calculations have been performed which
are capable of describing transonic flows over blunt bodies(3-7).
These employ either the exact time-dependent Euler equations, or
the full unsteady potential equation when the assumption of irro-
tationality is made. While such methods are often time consuming,

they are able to properly treat the time behavior of bodies oscil-

lating at high frequency. It will be assumed here that the body is

thin and the oscillation frequency low, in which case a limiting

form of the complete potential equation may be used to obtain a
flow field description.
In the case of two-dimensional inviscid irrational unsteady

flow, the governing equation for the velocity potential function

is: 4 . .
326 50 _plee . (22Y), _ye ] 2| 2%¢
a3 {(v ¥ 1)(ax) /2+ (v - D[+ (ay) /2 -u22]- a2t 2%

t
Y, | 30 , (38Y,, _g2/p]- a2] 2%
g(' 1)<ey) /2 (Y = 1)[at <8x> /2 00/2] aw§ 3y2 (1)

3% 320 3% 3% 3%¢ 30 3% _
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If this equation is to be applied in order to describe the flow
over an airfoil with maximum thickness to chord ratio, §, then in
the limiting process M_ - 1, § »+ 0, a much simpler form results.

A careful study of the characteristic length and time scales for




low frequency oscillations reveals the dominant terms of Equation

1 to be the following:

Q
A
o

2
I(Y + 1)(%;‘—:) /2 = [or - vuz/z + a;]§32

(2)

39 \? 2] 320 30 920
+ - Dl(=]) - - a? — A =
’(Y )[(Bx) Ve - am$§§7-+ - 0x 0xot

In actual application, even more simplification follows as it is
only necessary to include the dominant nonlinear term in order to
account for first order transonic effects. Equation 2 is the form
considered here and it is noted because the specific implementation
of one of the methods analyzed leaves the time variable unscaled

so that it is not possible to deduce its exact origin.

For this study, one airfoil was selected for investigation and
was prescribed tec oscillate sinusoidally in time in one mode of
motion, namely pitch. Flow field calculations were performed and
solutions to the two-dimensional unsteady low frequency small dis-
turbance transonic potential equation was obtained by both the
method of harmonic analysis and by time integration for several
values of freestream Mach number and reduced frequency. Results of
these calculations are compared. It should be noted that neither
method is restricted to the single degree of freedom (pitch) sel-
ected here. The airfoil choosen was an NACA 64A010 airfoil which
is symmetric and ten percent thick, and is considered representative

of transonic airfoils currently in use. Asymmetric behavior is ex-

A
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amined by oscillating the airfoil about a mean nonzero angle of

attack.
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SECTION II

HARMONIC ANALYSIS

The method of harmonic analysis assumes that the unsteady
motion of an airfoil oscillating with small amplitude may be re-
garded as a perturbation about the steady state. The velocity po-
tential function is expanded in a series of increasing powers of
a small parameter which is a measure of the amplitude of the un-
steady motion of the boundary. This results in a sequence of par-
tial differential equations for the perturbation potentials with
the zeroth order equation recovering the steady-state result. All
higher order equations are linear with non-constant coefficients
which now depend upon the steady solution. This set of equations
may be solved using the well known relaxation algorithms which have
been utilized for steady-state transonic flow calculations. Har-
monic analysis has been used successfully for unsteady airfoil and
rectangular wing motions(s-lz). The leading order equations of this
method are summarized here for the specific application to the

9)

pitching motion of an oscillating airfoil .

The velocity potential is written as

q)(erat) = Umx +U°°C(52/3[(1 + Y)Mi]_l/a ¢T(£’ HT, TT) (3)

where ¢ is the airfoil chord and § the thickness ratio with

g = X/C, (4)
ng =yl + V2] 2, )
5
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and o = U el + vyem212/2 /e, (6)

It is assumed that the angle of attack a, may be expressed as

i iwt
e + au e (7)

where w is the oscillation frequency and a/8<<l. The perturbation

potential is now decomposed into steady and unsteady components, as

¢p (€5 Ny Ty) = ¢ (&, np) + (au/5)¢“(g’ nT)eiQTT. (8)

Here
Q= @+ y)om2]-2/? o

where
R (10)

is the reduced frequency. It is noted that QTT = o, The airfoil

boundary is described by
y-F(x, t) =0 for 0<x<c (11)
with

F(x, t) = c§[£(E) - a£/8], 12)

o given by Equation 7 and £(E) a known function corresponding to
the airfoil geometry.

If Equations 3 - 6 and Equation 8 are now substituted into




e - -

the reduced potential Equation 2 (or Equation 1), the following ex-

pressions for ¢s and ¢u are obtained:

ap \ 3%, %, (13)
(K L ag ) agz + anz - n)
T
8¢s 82¢u 32¢ 2¢ aq) (14)
(K - 35 a? + anT‘ ag*[ + 2410 ag - 0,
where
k=@ -M)[a+ ]/ s)

is the transonic similarity parameter. The corresponding boundary
conditions for Equations 13 and 14 are obtained from the flow tan-
gency condition on the airfoil surface, from the Kutta condition

at the trailing edge with a constant jump in potential across the
vortex sheet in the wake, and by requiring the perturbation velocity
to vanish far from the airfoil surface. In the limit as § - 0, the
airfoil and wake conditions may be applied on y = 0. Thus the

boundary conditions become

;%-%-as/sonnT=0forogggl, K5
[zz] 0 on ny = 0 for £> 1, an
(;%P-)z +(2—:T§)2-> 0as £2 + n;-_,-»eo A (18)
%--lonn,r-OforOfEfl, 19)
[-;t—]- 0Oonng=0 for £ > 1, (20)

7
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and d \2 [ \? (21)
u u
(ﬁ) +(ﬁ) >0as £ g e

Here the square brackets denote the "jump" in the enclosed quantity.
In this study, for the purpose of comparison with time inte-~
gration, the unsteady variation of the pitching angle, o, was pre-

scribed to have a sinusoidal variation in time; i.e.,

oa=0 +o0o sin(wt). (22)
s u

The unsteady flow field response to this variation may be obtained

from the solutions to Equations 13 and 14 as

iQrT
¢ (Es Nps Ty) = 6_(E, ny) + (auIG)Im[%u(E, npe . 23)

In terms of the perturbation potential, the pressure coefficient
defined in the usual manner is then given by
10t

C_ = -28273[ (1 + VM1 35 & (0 /O e TY], (26
P 7 3 . 9

from which the corresponding 1ift coefficient per unit span may be

obtained:

Several observations concerning this formulation seem appro-
priate here. The steady small disturbance transonic equation ex-
hibits a type dependence which is in itself a function of the sol-
ution of the equation; i.e., Equation 13 is hyperbolic, parabolic,

a¢s - K ) greater than, equal to, or less than

—

or elliptic for (




T

zero respectively. Solutions to this equation have been efficiently
obtained by relaxation procedures based on the mixed differencing
scheme of Murman and Cole (13) which accounts for the local nature

of the flow. For a given flow situation, then, the location of

o
"shock waves" will occur where ( ‘552 - K ) changes sign. In the
case of the unsteady perturbation Equation 14, type dependence
3
again depends only on the steady result (i.e., on -555 =K e

Thus the unsteady position of any shock waves which form is con-
strained to vary only slightly from the steady location. In fact,
this variation is proportional to (au/G) where it will be recalled
that au/6<<1. Hence, harmonic analysis precludes a description of
large scale shock excursions which have commonly been observed in
transonic experiments. This results directly from the linearization
about the steady state. Time integration, on the other hand, makes
no such assumptions. Comparison of the results of these two meth-
ods will help indicate under which conditions the harmonic assump-
tions remain valid.

One distinct advantage of the harmonic method is that due to
the linearization, all aerodynamic coefficients now become linear
functions of the unsteady deflection angle, e Therefore, these
coefficients depend only on the reduced frequency, k. Such is not
true of the time integration technique, because of the complete

nonlinear treatment involved.

R
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SECTION III

TIME INTEGRATION

Numerical finite difference schemes that integrate the equa-
tions of motion in time are capable of simulating nonlinear unsteady
transonic flow phenomena, including irregular shock wave
motions(1’3-6’14-17). These schemes usually rely upon shock cap-
turing techniques to resolve shock waves, thereby requiring con-
servative differencing form of the governing equations. This is
not always convenient. Time explicit finite difference procedures
(3-6) generally have a time step restriction for stability such
that computations are often lengthy. More recently, however, fully

(17-19) have relieved this constraint, making

implicit techniques
time integration computationally efficient.
Details of the form of the equation to be integrated in time

for the case of an airfoil oscillating in pitch are summarized here.

The velocity potential is expanded similarly to Equation 3 as

O(x, ¥, t) = Ux + U e8%/3¢,(E, ng, Tp) (26)

where
nB - yG’/’/c, (27)
Ty = wt, (28)

and £ is given by Equation 4. If these definitions are substituted

into Equation 2, there results

10
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[(1 - M2)6-2/3 - 1+ M2 8| Ty N o guag2s-2/3 305 (5
5% JET g BEaT,
The airfoil surface is described by Equations 11 and 12 such that
the boundary conditions corresponding to Equation 29 are the fol-

lowineg:

90 (30)
b AE - < B
anB dE o/8 on g 0 for 0 < E <1,

(31)
[B¢B]
EET- = () on nB =0 for £ > 1,

ad’B ] a¢B ’ 2 2
(SE—) Sﬁ; + 0 as £° + n° > =,

We note here that in Equation 30, a is the instantaneous pitch

(32)

angle which is prescribed by Equation 22 for this study. With this

formulation the pressure coefficient becomes
c_ = -262 % g (33)
9t ’

and the 1lift follows according to Equation 25.

11

>




—————— . e

SECTION IV

DETAILS OF THE NUMERICAL SOLUTIONS

We now seek solutions to Equations 13 and 14 with boundary
conditions 16 - 21 and Equation 29 with boundary conditions 30 -

32 respectively for several values of freestream Mach number, re-
duced frequency, and angle of attack. Existing computer codes have
been developed for the express purpose of obtaining such solutions
for the form of the equations arrived at in Sections II and III.

A certain amount of freedom is available to the user of these codes
and has been exercised in order to make the resultant comparisons
as reliable as possible. Each code has certain prominent character-
istics which are central to its respective formulation. These are
noted in this section. It is the intention to achieve a comparison
between the alternative basic treatments of the unsteady low fre-
quency small disturbance transonic potential equation, rather than
any numerical behavior inherent to a specific computer code. This
is not an easy task as we are dealing with the actual solution of
finite difference equations as opposed to nonlinear differential
equations.

Equation 13 was solved via computer code STRANS2 (9,20) using
the relaxation procedure mentioned previously. The resulting sol-
ution for ¢s is then input into code UTRANS2 (9,20) which solves
Equation 14 for ¢u’ again by relaxation. These two codes were for-
mulated for compatible usage. Time integration of Equation 29 is

achieved by employing code LTRAN2 (17), which makes use of an effi-

12




cient time-implicit method. In addition, LTRAN2 has the capability
of solving the steady transonic equation by the same relaxation
procedure of STRANS2 and UTRANS2. It will be of interest to con-
sider comparisons of some steady solutions.
4.1 Airfoil Boundary Conditions

STRANS2 and UTRANS2 require as input an analytic description
of the airfoil surface slope, -gg . This was accomplished by
fitting a least squares curve to NACA tabular airfoil data for an
assumed functional dependence of f on £ (21). The function was
selected as

£(E) =b EV2 4 § O 34)
1 n=0 *

/2 is

from which the slope follows directly. We note the term 51
included to approximate the blunt leading edge, thus, making the
surface slope infinite at £ = 0. Small disturbance theory is in-
capable of treating this singularity and in general either the
leading edge is not included in the computational mesh, or the
leading edge slope is modified to some finite value in the limit

£ » 0, in order to accomodate blunt nosed airfoils. The former
technique was employed here for both harmonic analysis and time in-
tegration. LTRAN2 approximates the airfoil slope by passing a cubic
spline through the tabular data and extracting the corresponding
slope.

4.2 Farfield Boundary Conditions

The harmonic farfield boundary condition, Equations 18 and 21,

13
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are treated by obtaining the limiting form of the potentials (¢s
and ¢u) far from the airfoil and applying this result at a large
but finite distance. This approach was used in STRANS2 and UTRANS2
with considerable savings in the exte - of the computational mesh.
For the steady potential, ¢s, the limiting form is the farfield
condition derived by Klunker (22), which results from application
of Green's theorem to Equation 13. In a similar fashion, a far-
field expression for ¢u was obtained in terms of the Hankel func-
tion of the second kind of order zero (9). A finite series expan-
sion is used to approximate this Hankel function in UTRANS2. If the
farfield condition is applied too far from the body it was found
that this series may fail to converge. This fact was of importance
when numerical meshes were chosen as will be shown in the next sub-
section.

For time integration, no approximate farfield condition has
been found. Therefore, LTRAN2 applies the mean steady-state lim-
iting form of the potential extremely far from the body. While
this treatment is not exact, it has produced no numerical anomalies.
The farfield boundary, however, must be taken sufficiently far from
the airfoil such that no waves reflected from this boundary reach
the immediate vicinity of the airfoil over the interval of time
covered by the integration.
4.3 Computational Meshes

Codes STRANS2 and UTRANS2 have the capability of accepting in-

put data for both the number and distribution of numerical mesh

14




points. This is not in general true of LTRAN2. As the spatial
differencing of the finite difference equations of the time inte-
gration in LTRAN2 is similar to that employed by the harmonic anal-
ysis codes, then if the computational meshes are identical, the
truncation error incurred in the respective solutions should be
formally of the same order. Because the scaling of the y-coordinate
is not the same for both methods (see Equations 5 and 27), the

meshes were made identical by forcing values of n,, and ng to cor-

T
respond to the same value of the physical variable, y. Identical
values of £ were used in all programs.

The meshes employed in STRANS2 and UTRANS2 were truncated ver-
sions of the one used in LTRAN2 because of the treatment of the far-
field boundary conditions described in the last subsection. Both
meshes used 33 points distributed along the airfoil surface with a
point at the trailing edge and the leading edge situated between
mesh points. The minimum £-step, A £ min, was 0.00330 at the lead-
ing edge. Minimum mesh sizes in the normal direction occured at
y = 0 with a symmetrical distribution of points above and below
this axis. Mesh boundaries and other pertinent data are given be-
low:

a. STRANS2, UTRANS2

(1) number of Z-points = 70
(2) number of nT-points = 43
(3) Angyy, = 0.02151

(4) -8.19140 < E < 9.02411

15




(5) -10.13300 b < 10.13300
b. LTRAN2

(1) number of &-points = 99

(2) number of nB-points =79

(3) Aanin = 0.02000

(4) -1033.53047 < £ < 855.91313
(5) -811.12200 <ng < 811.12200

4.4 Accuracy of the Calculations

Steady-state solutions for ¢s provided by STRANS2 were con-
sidered converged when the variation in ¢s at all mesh points be-
tween consecutive iterations was less than 10*5. This same criteria
was applied when steady solutions were obtained from LTRAN2. 1In
the case of the complex potential, ¢u’ a less severe standard was
invoked. This was because of the extremely slow rate of convergence
of the solution procedure employed by UTRANS2 for solving Equation
14. More accuracy in ¢S was insisted'upon because of its appear-
ance in Equation 14. Unsteady solutions were accepted as converged
when the variation in |¢u| between consecutive iterations was less
than 10-4. Here, |¢u| implies the absolute value in a complex
sense. This was considered more than sufficient for an adequate
comparison with time integrated results.

The steady-state solutions obtained from LTRAN2 were used as
initial profiles for all time integrations. Starting with these

values, solutions were advanced in time invoking the forced boundary

condition, Equation 22. The time step size used for any given case

16




corresponded to 360 time steps over one period of forced oscillation
at the reduced frequency. It was determined that such a time step
was sufficiently small by increasing this value by up to a factor
of five without variation in the first three significant figures
of the computed lift and local pressure coefficients.

After solutions were advanced sufficiently in time, the effect
of the initial conditions became negligible and the solutions
attained a periodic behavior due to the periodic boundary condition.

It is this periodic behavior which we desire to compare, not the

small time history which can never be predicted by harmonic analysis.

Solutions were considered periodic when repeatability to three sig-
nificant figures was attained over two successive periods by all
local pressure coefficients. For the cases examined in this study,
effects of the initial conditions usually persisted for less than
one period. As a result all solutions were forced for three periods
of oscillation starting from the initial profile.

Lift coefficients for both methods were computed according to
Equation 25 by numerical integration. Codes STRANS2 and UTRANS2
employed trapezoidal rule for this purpose, whereas LTRAN2 used a
Simpson's rule. Although this renders the LTRAN2 results more accu-
rate, both techniques were considered sufficiently exact for the

comparisons made here.

17
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SECTION V

RESULTS

Figure 1 shows the comparison of the steady-state results
from STRANS2 and LTRAN2 in terms of the surface pressure coeffi-
cient for the case M_= 0.72 and o = 0. Because the airfoil is
symmztric, the pressure distributions on the upper and lower sur-
faces are identical. It is noted that this case is subcritical.
Agreement between the two results is seen to be quite good over the
last 50% of the airfoil. Lack of agreement on the front portion
of the surface is attributed to the alternative methods used to
prescribe the airfoil slope by the respective codes. In particular,
it is believed that the anomalous behavior near £ = 0.1 in the
LTRAN2 solution results from the cubic spline used to approximate
the airfoil surface. Other than this behavior, the results compare
reasonably well.

The unsteady lift coefficient as a function of time for a 1°
pitching oscillation at a reduced frequency of 0.05 and freestream
Mach number of 0.72 is displayed in Figure 2. Here the time origin
is purely fictitious and has been introduced solely for the purpose
of comparison. Respective time histories of 1lift calculated by each
method were aligned at the maximum and minimum 1ift values for this,
and subsequent figures. The results of the two methods are seen to
compare exceptionally well except near the peak lift value. Even
there, the predicted results are with 5% of each other. A compar-

ison of the unsteady surface pressure coefficients corresponding

18

S S e e et e

S S aoa o N

o




e T Ay

"e0 = © pue z.°0 = ®y 103 @2ansssaqg soejang Apea3s jo uostaedwo) T @2anbig
” 3
0o0’l G20 0s0 G20 000 .
A1 = : : ano
&
o
™
8
8
]
]
]
' t + 000
&
a
]
o
e -
° dy
") (e}
0L0- = *no @ M
2.0 :="W m
°
2SNVYYHLS o ¢ “
8
L 8
Z2NYyd11 O “ o (o]
@
e Q o
1 1 l

LTI




e e —— e ———————"

1
e e TIME
N INTEGRATION

/ \ HARMONIC
/ \ ANALYSIS

Mg = 0.72
0.l - az=1°SIN (wt) —
K = 0.05

CL 00

-0.1 -

]
o 100 200 300
wt (DEGREES)

Figure 2. Comparison of Unsteady Lift Coefficient
for a 1° Pitching Oscillation at M_ = 0.72
and k = 0.05.
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to this case are shown in Figure 3. The time here was chosen as
that at which the maximum 1ift occured where the widest variation
between the two results appeared. It is noted that the flow has
remained subcritical. Generally the results compare quite favorably
with the greatest discrepancy between the two methods again occur-
ring over the front portion of the surface. The anomalous behavior
in the initial profile (steady-state) of the time integration appears
to have persisted into the unsteady result.

In Figure 4 the unsteady lift coefficient at the same Mach
number and pitching displacement is displayed for a higher reduced
frequency, k = 0.20. This comparison is quite similar to that seen
at the lower frequency (Figure 2) with the maximum disagreement be-
tween the two results occurring at the peak 1lift value. It is in-
teresting to note that both harmonic analysis and time integration
indicate lower values for the 1lift coefficient at this higher fre-
quency (k = 0.20) than were predicted for k = 0.05. In addition,
for k = 0.20 time integration predicts a lower lift than harmonic
analysis. The opposite behavior was observed for k = 0.05 (Figure
2). Corresponding unsteady surface pressure coefficients for this
case are shown in Figure 5. Again these results are quite similar
to those of the lower frequency case shown in Figure 3.

As a representative example of a comparison of supercritical
calculations by the two computational methods, a freestream Mach
number of 0.82 was selected. Steady-state surface pressure coeffi-

cients are shown in Figure 6. A well-defined shock is seen to lie
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between £ = 0.5 and £ = 0.6. The same anomalous behavior of the
LTRAN2 result for the case M_ = 0.72 is present here. Downstream
of this, a slight variation in the profiles up to the mid-chord
is noted, with good agreement from there rearward.

Figure 7 indicates the unsteady comparison at this Mach number
for a 1° pitching oscillation at a reduced frequency of 0.05 in
terms of the lift coefficient. Unlike the lower Mach number results,
there is now considerable difference in the two solutions. At the
peak 1lift value the time integration is seen to produce approximately
50%Z more lift than the harmonic analysis. Clearly, this effect is
due to the presence of the shock and its associated motion.

The unsteady surface pressure coefficients at the value of time
corresponding to the maximum 1ift for this supercritical case are
displayed in Figure 8. Near £ = 0.1, the anomalous behavior in the
time integration appears to have become more pronounced. Time in-
tegration has predicted a lower and a higher maximum pressure on
the lower surface than harmonic analysis. In addition, because the
airfoil is symmetric, the average of the position of the shock on
the upper and lower surfaces corresponds to the time mean shock
location. This is somewhat further aft for the time integration
than for harmonic analysis which always predicts the mean location
to coincide with the steady-state value. Others have observed this
identical behavior (23). It is also evident that harmonic analysis
has constrained the shock motion from moving as far aft on the

upper surface or as far forward on the lower surface than is permitted.
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by integrating in time.

In order to examine asymmetric behavior of the solutions gen-
erated by the two methods, the airfoil was oscillated about a non-
zero angle of attack. Steady-state surface pressure coefficients
at M_ = 0.72 and a = 1° are displayed in Figure 9. This case is
seen to be sub-critical and it is interesting to note that this
steady result is quite similar to the two unsteady results at the
same Mach number (Figures 3 and 5). The time varying lift coeffi-
cient for a 0.5° pitching oscillation about the steady 1° angle of
attack for a reduced frequency, k = 0.05, is shown in Figure 10.
Here the shape of the time history lift curve generated by each
method is virtually identical. However, time integration predicts
a higher time mean 1lift coefficient than that inaicated by harmonic
analysis. This corresponds to the same behavior as was observed
for the case M_ = 0.82 where it was noted that harmonic analysis
always recovers steady-state conditions as the time mean values,
which is not necessarily true of time integration. Figure 11 in-
dicates the comparison of surface pressures for this case at the
time corresponding to maximum lift. The flow has remained just
subcritical, with most of the discrepancy between the two results
occurring near the leading edge. Abrupt changes in the slope of
the pressure curve which are evident in time integrated profile may
have resulted in loss of accuracy in the calculation of the lift

coefficient through numerical integration.
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Figure 10. Comparison of Unsteady Lift Coefficient for a
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of Attack of 1° at M_ = 0.72 and k = 0.05.
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SECTION VI

CONCLUSIONS

Solutions to the unsteady low frequency small disturbance
transonic potential equation have been obtained by both the method
of harmonic analysis and by the method of time integration for the
pitching oscillation of an NACA 64A010 airfoil at several combin-
ations of freestream Mach number, reduced frequency, and displace-
ment amplitude. As far as was possible, computational differences
in obtaining those solutions were minimized. When this could not
be accomplished, these differences were noted. It is considered
significant that all solutions were generated using an identical
computational mesh in the immediate vicinity of the airfoil. The
choice of free parameters corresponding to each particular case
considered (M_, k, pitching amplitude) was specifically restricted
so as not to violate the inherent assumption of either method. The
reduced frequency was never more than 0.20 as the low frequency
approximation becomes a poor assumption above a value of about 0.40.
Pitching amplitudes were specified to be 1° or less so as not to
violate the small disturbance assumption. While harmonic analysis
was not expected to predict large scale shock-wave motions with
accuracy, a supercritical case was considered in order to deduce
the range of acceptability for this method of analysis.

Comparisons between the solution methods were provided in terms

of the time dependent lift coefficient and the unsteady surface
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pressure coefficient. For oscillations in a subecritical flow field
about a zero mean angle of attack the two methods were found to

agree quite well. When a large shock appeared, harmonic analysis
failed to reproduce the unsteady shock motion predicted by time in-
tegration. In the case of oscillation about a non-zero mean angle

of attack, the unsteady lift obtained from the harmonic result varied
by a simple translation from that resulting from integrating in

time.
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